Здесь показаны различия между двумя версиями данной страницы.
| Предыдущая версия справа и слева Предыдущая версия Следующая версия | Предыдущая версия | ||
|
subjects:matanaliz:точки_разрыва_и_их_классификация [2013/10/22 21:11] ¶ |
subjects:matanaliz:точки_разрыва_и_их_классификация [2013/11/02 19:01] (текущий) ¶ |
||
|---|---|---|---|
| Строка 1: | Строка 1: | ||
| ====== Точки разрыва и их классификация ====== | ====== Точки разрыва и их классификация ====== | ||
| + | |||
| + | |||
| + | Пусть функция y=f(x) определена на множестве Х и пусть точка $ $ является предельной точкой этого множества. Говорят, что функция **f(x) непрерывна в точке $ $**, если $ $. Последнее условие равносильно условию $ $. | ||
| + | |||
| + | Функция f(x) непрерывна в точке $ $ тогда и только тогда, когда $ $. | ||
| + | |||
| + | Функция **f(x) непрерывна на множестве Х**, если она непрерывна в каждой точке этого множества. | ||
| + | |||
| + | **Точки разрыва первого рода**. Пусть точка $ $ является предельной точкой области определения Х функции f(x). Точка $ $ называется **точкой разрыва первого рода** функции f(x),если пределы справа и слева конечны. Если при этом $ $, то $ $-**точка устранимого разрыва**; если же $ $, то $ $-точка неустранимого разрыва первого рода, а разность $ $ называется **скачком функции f(x)** в точке $ $. | ||
| + | |||
| + | **Точки разрыва второго рода**. Если хотя бы один из пределов $ $ и $ $ не существует или бесконечен, то точка $ $ называется **точкой разрыва второго рода** функции f(x). | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| + | |||
| Видео урок :Точки разрыва и их классификация | Видео урок :Точки разрыва и их классификация | ||
| Строка 8: | Строка 25: | ||
| - | Видео урок :Вычисление пределов. Задача | + | Видео урок :Вычисление односторонних пределов. Точки разрыва и их классификация Задача |
| <box>Видео урок 2:Вычисление пределов.:</box> | <box>Видео урок 2:Вычисление пределов.:</box> | ||
| {{ {{ :subjects:matanaliz:20130819_155815.jpg?500 |Просмотр воозможен только в режиме обучения}} | {{ {{ :subjects:matanaliz:20130819_155815.jpg?500 |Просмотр воозможен только в режиме обучения}} | ||
Записаться на занятия к репетитору