Инструменты пользователя

Инструменты сайта


Боковая панель


Геометрия ( Справочник )
Стереометрия ( Справочник )
Математика ( Справочник )
Русский язык ( Справочник )
Физика ( Справочник )


Геометрия:

Введение в геометрию

Отрезок, луч, угол
   Отрезок
   Луч и полуплоскость
   Угол
   Измерение отрезков
   Измерение углов
   Смежные и вертикальные углы. Перпендикулярные прямые

Треугольники
   Треугольник и его элементы
   Признаки равенства треугольников
   Свойства равнобедренного треугольника. Третий признак равенства треугольников.

Основные геометрические построения
   Окружность
   Основные задачи на построение

Параллельные прямые
   Определение параллельных прямых
   Признаки параллельности двух прямых. Свойства параллельных прямых

Сумма углов треугольника
   Теорема о сумме углов треугольника
   Соотношения между сторонами и углами треугольника. Неравенство треугольника
   Расстояние от точки до прямой
   Признаки равенства прямоугольных треугольников

Четырехугольники
   Определение четырехугольника
   Параллелограмм. Расстояние между параллельными прямыми
   Диагонали и признаки параллелограмма
   Прямоугольник
   Ромб
   Квадрат
   Теорема Фалеса. Средняя линия треугольника
   Трапеция
   Центральная и осевая симметрии
   Пропорциональные отрезки

Тригонометрические функции острого угла. Теорема Пифагора
   Тригонометрические функции острого угла. Определения
   Теорема Пифагора
   Основные тригонометрические тождества
   Значения тригонометрических функций некоторых углов
   Зависимости между сторонами и углами прямоугольного треугольника
   Решение прямоугольных треугольников

Прямоугольные координаты
   Координатная ось
   Прямоугольная система координат на плоскости
   Расстояние между точками
   Координаты середины отрезка
   Определение тригонометрических функций для любого угла от 0 до 180°

Векторы
   Понятие вектора
   Сложение и вычитание векторов
   Умножение вектора на число
   Координаты вектора
   Скалярное произведение векторов

Подобие
   Определение подобных треугольников
   Признаки подобия треугольников
   Подобие произвольных фигур

Окружность
   Касательная к окружности
   Центральные и вписанные углы
   Вписанная и описанная окружности
   Пропорциональность отрезков хорд и секущих окружности

Решение треугольников
   Теорема синусов и теорема косинусов
   Решение треугольников

Многоугольники. Длина окружности
   Ломаная
   Многоугольник
   Правильный многоугольник
   Длина окружности
   Длина дуги окружности. Радианная мера угла

Площади плоских фигур
   Понятие площади
   Площадь прямоугольника
   Площадь параллелограмма
   Площадь треугольника и ромба
   Площадь трапеции
   Площадь правильного многоугольника
   Площадь круга и кругового сектора


Контакты

subjects:geometry:признаки_подобия_треугольников

Признаки подобия треугольников

Теорема 1. Первый признак подобия треугольников. Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

Доказательство. Пусть ABC и $А_1В_1С_1$ — треугольники, у которых $\angle A = \angle A_1 ; \angle B = \angle B_1$ , и, следовательно, $\angle C = \angle C_1$ . Докажем, что $\triangle ABC \sim \triangle A_1B_1C_1$ (рис.1).

Репетитор ГИА ЕГЭ

Рис.1

Отложим на ВА от точки В отрезок $ВА_2$, равный отрезку $A_1B_1$ , и через точку $А_2$ проведем прямую, параллельную прямой АС. Эта прямая пересечет ВС в некоторой точке $С_2$ . Треугольники $А_1В_1С_1\text{ и }А_2ВС_2$ равны: $А_1В_1 = А_2В$ по построению, $\angle В = \angle В_1$ по условию и $\angle А_1 = \angle А_2$ , так как $\angle А_1 = \angle А$ по условию и $\angle А = \angle А_2$ как соответственные углы. По лемме 1 о подобных треугольниках имеем: $\triangle A_2BC_2 \sim \triangle ABC$ , и значит, $\triangle ABC \sim \triangle A_1B_1C_1$ . Теорема доказана.

По аналогичной схеме устанавливаются теоремы 2 и 3.

Теорема 2. Второй признак подобия треугольников. Если две стороны одного треугольника соответственно пропорциональны двум сторонам другого треугольника и углы между этими сторонами равны, то треугольники подобны.

Теорема 3. Третий признак подобия треугольников. Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.

Из теоремы 1 вытекает следующее.

Следствие 1. В подобных треугольниках сходственные стороны пропорциональны сходственным высотам, т. е. тем высотам, которые опущены на сходственные стороны.


Обучение по геометрии

Пример 1. Подобны ли два равносторонних треугольника?

Решение. Так как в равностороннем треугольнике каждый внутренний угол равен 60° (следствие 3), то два равносторонних треугольника подобны по первому признаку.


Пример 2. В треугольниках ABC и $А_1В_1С_1$ известно, что $\angle A = \angle A_1 ; \angle B = \angle B_1 ; АВ = 5 м, ВС = 7 м, А_1В_1 = 10 м, А_1С_1 = 8 м.$ Найти неизвестные стороны треугольников.

Решение. Треугольники, определенные условием задачи, подобны по первому признаку подобия. Из подобия треугольников следует: $$ \frac{AB}{A_1B_1} = \frac{BC}{B_1C_1} = \frac{AC}{A_1C_1} \,\,\, (1) $$ Подставив в равенство (1) данные из условия задачи, получим: $$ \frac{5}{10} = \frac{7}{B_1C_1} = \frac{AC}{8} \,\,\, (2) $$ Из равенства (2) составим две пропорции $$ \frac{5}{10} = \frac{7}{B_1C_1} \\ \frac{5}{10} = \frac{AC}{8} \\ \text{ откуда }В_1С_1 = 14 (м), АС = 4 (м). $$


Пример 3. Углы В и $В_1$ треугольников ABC и $А_1В_1С_1$ равны. Стороны АВ и ВС треугольника ABC в 2,5 раза больше сторон $A_1B_1$ и $B_1C_1$ треугольника $A_1B_1C_1$. Найти АС и $A_1C_1$ , если их сумма равна 4,2 м.

Решение. Пусть условию задачи отвечает рисунок 2.

Признаки подобия треугольников

Рис.2

Из условия задачи: $$ 1) \angle B = \angle B_1 ; \\ 2) \frac{AB}{A_1B_1} = \frac{BC}{B_1C_1} = 2,5 \\ 3) AC + A_1C_1 = 4,2 м. $$ Следовательно, $\triangle ABC \sim \triangle А_1В_1С_1$. Из подобия этих треугольников следует $$ \frac{AC}{A_1C_1} = 2,5\text{ , или }АС = 2,5\bullet А_1С_1 $$ Так как АС = 2,5 • А1С1, то АС + А1C1 = 2,5 • А1С1 + A1C1 = 4,2, откуда A1C1 = 1,2 (м), АС = 3 (м).


Пример 4. Подобны ли треугольники ABC и А1В1С1, если АВ = 3 см, ВС = 5 см, АС = 7 см, А1В1 = 4,5 см, B1C1 = 7,5 см, A1C1 = 10,5 см?

Решение. Имеем: $$ \frac{AB}{A_1B_1} = \frac{3}{4,5} = \frac{1}{1,5} \\ \frac{BC}{B_1C_1} = \frac{5}{7,5} = \frac{1}{1,5} \\ \frac{AC}{A_1C_1} = \frac{7}{10,5} = \frac{1}{1,5} $$ Следовательно, треугольники подобны по третьему признаку.


Пример 5. Доказать, что медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2:1, считая от вершины.

Решение. Рассмотрим произвольный треугольник ABC. Обозначим буквой О точку пересечения его медиан $АА_1\text{ и }ВВ_1$ и проведем среднюю линию $A_1B_1$ этого треугольника (рис.3).

Подготовка и репетиторство по математике к ГИА и ЕГЭ

Рис.3

Отрезок $A_1B_1$ параллелен стороне АВ, поэтому $\angle 1 = \angle2 \text{ и } \angle 3 = \angle 4 $. Следовательно, треугольники АОВ и $A_1OB_1$ подобны по двум углам, и, значит, их стороны пропорциональны: $$ \frac{AO}{A_1O} = \frac{BO}{B_1O} = \frac{AB}{A_1B_1} $$

Но $AB = 2A_1B_1$ , поэтому $AO = 2A_1O$ и $BO = 2B_1O$ .

Аналогично доказывается, что точка пересечения медиан $BB_1\text{ и }CC_1} делит каждую из них в отношении 2:1, считая от вершины, и, следовательно, совпадает с точкой О.

Итак, все три медианы треугольника ABC пересекаются в точке О и делятся ею в отношении 2:1, считая от вершины.

Замечание. Ранее отмечалось, что биссектрисы треугольника пересекаются в одной точке, серединные перпендикуляры к сторонам треугольника пересекаются в одной точке. На основе последнего утверждения устанавливается, что и высоты треугольника (или их продолжения) пересекаются в одной точке. Эти три точки и точка пересечения медиан называются замечательными точками треугольника.


Пример 6. Проектор полностью освещает экран А высотой 90 см, расположенный на расстоянии 240 см. На каком наименьшем расстоянии в см. от проектора нужно расположить экран Б, высотой 150 см, так, что бы он был полностью освещён, если настройки проектора остаются неизменными.

Видео-решение.


Обучение по геометрии

subjects/geometry/признаки_подобия_треугольников.txt · Последние изменения: 2013/10/12 02:12 —

На главную страницу Обучение Wikipedia Тестирование Контакты Нашли ошибку? Справка

Записаться на занятия

Ошибка Записаться на занятия к репетитору

Телефоны:

  • +7 (910) 874 73 73
  • +7 (905) 194 91 19
  • +7 (831) 247 47 55

Skype: eduVdom.com

закрыть[X]
Наши контакты